Denotational Semantics of Call-by-name Normalization in Lambda-mu Calculus
نویسنده
چکیده
We study normalization in the simply typed lambda-mu calculus, an extension of lambda calculus with control flow operators. Using an enriched version of the Yoneda embedding, we obtain a categorical normal form function for simply typed lambda-mu terms, which gives a special kind of a call-by-name denotational semantics particularly useful for deciding equalities in the lambda-mu calculus.
منابع مشابه
On the denotational semantics of the untyped lambda-mu calculus
Starting with the idea of reflexive objects in Selinger’s control categories, we define three different denotational models of Parigot’s untyped lambda-mu calculus. The first one is built from an intersection types system for the lambda-mu calculus leading to a generalization of Engeler’s model of the untyped lambda calculus. The second model introduces correlation spaces (coming from Girard’s ...
متن کاملClassical logic, continuation semantics and abstract machines
One of the goals of this paper is to demonstrate that denotational semantics is useful for operational issues like implementation of functional languages by abstract machines. This is exemplified in a tutorial way by studying the case of extensional untyped call-byname λ-calculus with Felleisen’s control operator C. We derive the transition rules for an abstract machine from a continuation sema...
متن کاملCall-by-Push-Value: A Subsuming Paradigm
Call-by-push-value is a new paradigm that subsumes the call-by-name and call-by-value paradigms, in the following sense: both operational and denotational semantics for those paradigms can be seen as arising, via translations that we will provide, from similar semantics for call-by-push-value. To explain call-by-push-value, we rst discuss general operational ideas, especially the distinction be...
متن کاملControl categories and duality: on the categorical semantics of the lambda-mu calculus
We give a categorical semantics to the call-by-name and call-by-value versions of Parigot’s -calculus with disjunction types. We introduce the class of control categories, which combine a cartesian-closed structure with a premonoidal structure in the sense of Power and Robinson. We prove, via a categorical structure theorem, that the categorical semantics is equivalent to a CPS semantics in the...
متن کاملLecture notes on the lambda calculus
This is a set of lecture notes that developed out of courses on the lambda calculus that I taught at the University of Ottawa in 2001 and at Dalhousie University in 2007. Topics covered in these notes include the untyped lambda calculus, the Church-Rosser theorem, combinatory algebras, the simply-typed lambda calculus, the Curry-Howard isomorphism, weak and strong normalization, type inference,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 225 شماره
صفحات -
تاریخ انتشار 2009